Spring IOC 源码解析 (循环依赖的解决)

引言

之前的几篇对Spring IOC源码分析的文章,大体上把IOC容器内部实现做了分析,但在有些细节上并没有很深入的去分析。本篇文章主要是分析Spring IOC容器对Bean之间的循环依赖是如何解决的

什么是循环依赖

那么什么是循环依赖呢?简单的理解一下,A依赖B,B又依赖A,这就构成了一个最简单的循环依赖,为了帮助大家理解,新建两个互相依赖的类(儿子和爸爸互相依赖没有错吧 ..)

1
2
3
4
5
6
7
8
9
public class Father {
private String name;
private Son son;
}

public class Son {
private String name;
private Father father;
}

这两个bean交给Spring管理

1
2
3
4
5
6
7
8
9
<bean id="son" class="com.wangjn.demo.impl.Son">
<property name="name" value="son"></property>
<property name="father" ref="father"></property>
</bean>

<bean id="father" class="com.wangjn.demo.impl.Father">
<property name="name" value="father"></property>
<property name="son" ref="son"></property>
</bean>

启动Spring IOC容器,用getBean方法可以成功获取son对象,并且也注入了father对象,可见Spring为我们解决了循环依赖的问题。可是按照正常创建Bean的流程来说,这个过程将会是一个死循环,因为在创建son对象为son注入father属性时,就会去获取father对象,而在获取father对象赋值son属性的时候,又会去获取son对象,从而就陷入了死循环,然后程序崩溃。

可是结果并不是我们预料的那样,接下来就来分析Spring是如何解决这个问题的

Spring 如何解决循环依赖

之前对IOC源码分析的文章中有分析过Bean的创建过程,下面我将对循环依赖实现的某些细节作分析

Spring 用缓存解决循环依赖

让我们回到AbstractBeanFactorydoGetBean方法,doGetBean方法就是我们通过容器getBean方法实际调用的逻辑,我们在这里着重关注getSingleton方法,之前的分析中有提到,调用getSingleton(beanName)方法的目的是为了从缓存中直接获取已经创建的Bean,而不必重复去创建。现在让我们进到getSingleton方法里面去看看它都做了啥,从哪个缓存取到了Bean对象

1
2
3
4
5
6
7
8
9
10
11
protected <T> T doGetBean(
final String name, final Class<T> requiredType, final Object[] args, boolean typeCheckOnly)
throws BeansException {

final String beanName = transformedBeanName(name);
Object bean;

// 从缓存中获取 bean
Object sharedInstance = getSingleton(beanName);
... 省略其他创建bean的代码
}

getSingleton方法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
public Object getSingleton(String beanName) {
// 默认都是允许提前暴露对象
return getSingleton(beanName, true);
}

protected Object getSingleton(String beanName, boolean allowEarlyReference) {
// 从创建完成的bean缓存中获取bean
Object singletonObject = this.singletonObjects.get(beanName);
// 判断该bean是否仍在创建中,意思是Bean已经完成实例化,但还不完整。属性还未完全注入
if (singletonObject == null && isSingletonCurrentlyInCreation(beanName)) {
synchronized (this.singletonObjects) {
// 从提前暴露的Bean缓存容器(earlySingletonObjects)中获取
singletonObject = this.earlySingletonObjects.get(beanName);
// 仍未获取到则从singletonFactories缓存中获取
if (singletonObject == null && allowEarlyReference) {
ObjectFactory<?> singletonFactory = this.singletonFactories.get(beanName);
if (singletonFactory != null) {
singletonObject = singletonFactory.getObject();
// 加入到提前暴露Bean缓存(earlySingletonObjects)中
this.earlySingletonObjects.put(beanName, singletonObject);
// 从singletonFactories缓存中移除
this.singletonFactories.remove(beanName);
}
}
}
}
// 返回对象,这里返回的不一定是完全创建的对象
return (singletonObject != NULL_OBJECT ? singletonObject : null);
}

getSingleton方法中我们需要着重关注几个Bean的缓存,标题已经说了,缓存是解决循环依赖的关键,下面我介绍一下上面代码中提到了三种缓存

1
2
3
4
5
6
7
8
/** Cache of singleton objects: bean name --> bean instance */
private final Map<String, Object> singletonObjects = new ConcurrentHashMap<String, Object>(256);

/** Cache of singleton factories: bean name --> ObjectFactory */
private final Map<String, ObjectFactory<?>> singletonFactories = new HashMap<String, ObjectFactory<?>>(16);

/** Cache of early singleton objects: bean name --> bean instance */
private final Map<String, Object> earlySingletonObjects = new HashMap<String, Object>(16);
  1. singletonObjects 用于存放创建完成的单例对象
  2. singletonFactories 用于存放对象工厂类,这里是解决循环依赖的
  3. earlySingletonObjects 用于存放提前暴露的单例对象。指的是已经完成Bean的实例化,但还未完成属性注入的不完整对象

再来说上面代码中取缓存的步骤,首先肯定是从singletonObjects中获取完全创建完成的Bean对象,如果获取不到,则从提前暴露对象缓存(earlySingletonObjects)中获取,还获取不到再到singletonFactories中获取

到这里为止,我们只分析了取Bean缓存的过程,所以接下来我们要分析的就是放缓存的过程代码

提前暴露Bean

现在让我们去到创建Bean的过程。如果缓存没取到,会执行创建Bean的逻辑,找到AbstractAutowireCapableBeanFactory类的doCreateBean方法,这个方法在之前的文章中有做过分析,但没有对Bean缓存处理做分析。这里我们着重看中间解决循环依赖的那部分

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
protected Object doCreateBean(final String beanName, final RootBeanDefinition mbd, final Object[] args)
throws BeanCreationException {

// Instantiate the bean.
// 封装bean的容器
BeanWrapper instanceWrapper = null;
if (mbd.isSingleton()) {
instanceWrapper = this.factoryBeanInstanceCache.remove(beanName);
}
if (instanceWrapper == null) {
// 这里是创建 BeanWrapper
instanceWrapper = createBeanInstance(beanName, mbd, args);
}
final Object bean = (instanceWrapper != null ? instanceWrapper.getWrappedInstance() : null);
Class<?> beanType = (instanceWrapper != null ? instanceWrapper.getWrappedClass() : null);
mbd.resolvedTargetType = beanType;

// Allow post-processors to modify the merged bean definition.
synchronized (mbd.postProcessingLock) {
if (!mbd.postProcessed) {
try {
applyMergedBeanDefinitionPostProcessors(mbd, beanType, beanName);
}
catch (Throwable ex) {
throw new BeanCreationException(mbd.getResourceDescription(), beanName,
"Post-processing of merged bean definition failed", ex);
}
mbd.postProcessed = true;
}
}

// 判断是否需要提前暴露对象的引用,用于解决循环依赖
boolean earlySingletonExposure = (mbd.isSingleton() && this.allowCircularReferences &&
isSingletonCurrentlyInCreation(beanName));
if (earlySingletonExposure) {
if (logger.isDebugEnabled()) {
logger.debug("Eagerly caching bean '" + beanName +
"' to allow for resolving potential circular references");
}
addSingletonFactory(beanName, new ObjectFactory<Object>() {
@Override
public Object getObject() throws BeansException {
// 这里会与AOP相关
return getEarlyBeanReference(beanName, mbd, bean);
}
});
}

// Initialize the bean instance.
Object exposedObject = bean;
try {
// 依赖注入的主逻辑
populateBean(beanName, mbd, instanceWrapper);
if (exposedObject != null) {
// 执行一些初始化的方法
exposedObject = initializeBean(beanName, exposedObject, mbd);
}
}
catch (Throwable ex) {
if (ex instanceof BeanCreationException && beanName.equals(((BeanCreationException) ex).getBeanName())) {
throw (BeanCreationException) ex;
}
else {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Initialization of bean failed", ex);
}
}

if (earlySingletonExposure) {
Object earlySingletonReference = getSingleton(beanName, false);
if (earlySingletonReference != null) {
if (exposedObject == bean) {
exposedObject = earlySingletonReference;
}
else if (!this.allowRawInjectionDespiteWrapping && hasDependentBean(beanName)) {
String[] dependentBeans = getDependentBeans(beanName);
Set<String> actualDependentBeans = new LinkedHashSet<String>(dependentBeans.length);
for (String dependentBean : dependentBeans) {
if (!removeSingletonIfCreatedForTypeCheckOnly(dependentBean)) {
actualDependentBeans.add(dependentBean);
}
}
if (!actualDependentBeans.isEmpty()) {
throw new BeanCurrentlyInCreationException(beanName,
"Bean with name '" + beanName + "' has been injected into other beans [" +
StringUtils.collectionToCommaDelimitedString(actualDependentBeans) +
"] in its raw version as part of a circular reference, but has eventually been " +
"wrapped. This means that said other beans do not use the final version of the " +
"bean. This is often the result of over-eager type matching - consider using " +
"'getBeanNamesOfType' with the 'allowEagerInit' flag turned off, for example.");
}
}
}
}

// Register bean as disposable.
try {
registerDisposableBeanIfNecessary(beanName, bean, mbd);
}
catch (BeanDefinitionValidationException ex) {
throw new BeanCreationException(
mbd.getResourceDescription(), beanName, "Invalid destruction signature", ex);
}

return exposedObject;
}

通过看代码,可知在Bean完成实例化之后,注入属性之前,Spring就将这个不完整的Bean放到了singletonFactories缓存中,从而让这个Bean提前进行了暴露。这样子在后续的属性注入操作中,如果存在循环依赖,就会从缓存中获取到这个提前暴露的Bean,从而可以顺利完成依赖注入。但是要注意这时候注入的对象是不完整的,但是因为依赖方已经持有它的引用,所以后续对象的完整性是可以保证的

总结

本篇文章主要从SpringBean的缓存层面分析了其对循环依赖的解决,虽然是Spring帮我们解决了这个问题,但是对于实现的逻辑我们仍然应该去了解,譬如,通过查看源码可知Spring仅仅对单例类型的循环依赖进行解决,对于有状态的BeanSpring并没有去做处理,而是直接跑出异常,这些都是需要注意的。

Powered by Hexo and Hexo-theme-hiker

Copyright © 2013 - 2020 王俊男的技术杂谈 All Rights Reserved.

访客数 : | 访问量 :